
TEO: Ephemeral Ownership for IoT Devices to Provide Granular
Data Control

Han Zhang
Carnegie Mellon University

hzhang3@cs.cmu.edu

Yuvraj Agarwal
Carnegie Mellon University

yuvraj@cs.cmu.edu

Matt Fredrikson
Carnegie Mellon University

mfredrik@cs.cmu.edu

ABSTRACT
As Internet-of-Things (IoT) devices rapidly gain popularity, they
raise significant privacy concerns given the breadth of sensitive
data they can capture. These concerns are amplified by the fact that
in many situations, IoT devices collect data about people other than
their owner or administrator, and these stakeholders have no say
in how that data is managed, used, or shared. To address this, we
propose a newmodel of ownership, IoT Ephemeral Ownership (TEO).
TEO allows stakeholders to quickly register with an IoT device for
a limited period, and thus claim co-ownership over the sensitive
data that the device generates. Device admins retain the ability to
decide who may become an ephemeral owner, but no longer have
access or control to the private data generated by the device. The
encrypted data in TEO is accessible only by entities after seeking
explicit permission from the different co-owners of that data. We
verify the key security properties of our protocol underpinning
TEO in the symbolic model using ProVerif. We also implement a
cross-platform prototype of TEO for mobile phones and embedded
devices, and integrate it into three real-world application case stud-
ies. Our evaluation shows that the latency and battery impact of
TEO is typically small, adding ≤187 ms onto one-time operations,
and introducing limited (<25%) overhead on recurring operations
like private data storage.

CCS CONCEPTS
• Security and privacy → Security services; Access control;
Authorization; Formal security models.

KEYWORDS
Internet of Things, ephemeral ownership, protocol verification,
stakeholder privacy, access control
ACM Reference Format:
Han Zhang, Yuvraj Agarwal, and Matt Fredrikson. 2022. TEO: Ephemeral
Ownership for IoT Devices to Provide Granular Data Control. In The 20th
Annual International Conference on Mobile Systems, Applications and Services
(MobiSys ’22), June 25-July 1, 2022, Portland, OR, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3498361.3539774

1 INTRODUCTION
Internet-of-Things (IoT) devices are rapidly gaining popularity in
both private settings (e.g., homes, offices) and public spaces (e.g.,

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9185-6/22/06.
https://doi.org/10.1145/3498361.3539774

conference rooms) [32, 55]. However, their growing ubiquity has
led to privacy concerns that often stem from the breadth of sensitive
data (e.g. audio, video, images) that they can sense [11, 28, 41].

To address growing IoT privacy concerns, prior work proposes
expressive access control mechanisms for authorization and del-
egation [10, 31, 46, 75], decentralized storage solutions based on
blockchain [8, 27, 73, 76], and cryptographic access control schemes
[4, 44, 53, 56, 68, 77, 78]. One key limitation of these approaches is
that they lack support for exclusive user control. They focus primar-
ily on the privacy concerns relevant to the device owners, and not
other stakeholders who may have legitimate concerns about these
devices since the data they capture may relate to their activities.
These approaches often grant the sole device owner, or a small
group of administrators, full authority over the data that the device
generates, assuming these entities are trusted by those who may
be impacted by the devices.

As pointed out by a growing body of research, these assump-
tions are not always consistent with the emerging ubiquity of smart
devices in shared spaces. Passive bystanders may nonetheless be
impacted by a smart device simply by, for example, visiting some-
one’s home [11, 88], or by incidental exposure in public areas [21].
A related but distinct scenario is illustrated by the presence of IoT
devices in short-term rentals (e.g., Airbnb), where guests may wish
to use whatever smart devices are in their units, but have concerns
about the host’s ability to invade their privacy [25, 60]. Both cases
highlight the lack of support for stakeholders’ privacy in existing
access management systems. In situations like these where there is
an implied expectation of privacy, any user in a device’s vicinity
who is impacted by its sensors should have a say when it comes to
the device’s functionality and the data it generates. A key challenge
that we seek to address is giving stakeholders control over devices
that impact them, so that they can decide how these devices operate,
and who has access to any data that emanates from their sensors.

We propose TEO — IoT Ephemeral Ownership — a model of
device ownership that splits the traditional fixed IoT owner role into
“admin” and one or more “ephemeral owners”, and a corresponding
authorization protocol that embodies this model. Take as a working
example the home rental scenario. As the admin, the host of the
rental can install TEO-enabled devices in the rental unit, claiming
physical ownership in an initialization phase. When a rental guest
arrives, they claim “ephemeral ownership” of the device, assuming
exclusive control over the device’s operation and any data that
it generates during their stay. Incoming commands to the device
must be authorized by the ephemeral owner, and data stored by the
device will be encrypted so that only the ephemeral owner is able
to later access it. To facilitate data accessibility and ease the on-
device storage burden, TEO provides a way to leverage untrusted
third-party cloud storage providers.

302

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3498361.3539774
https://doi.org/10.1145/3498361.3539774
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Han Zhang, Yuvraj Agarwal, and Matt Fredrikson

After the ephemeral owner’s term expires, new guests can claim
the device and become ephemeral owners. Previous guests will no
longer have the authorization to control the device, or any new
data that it generates, but they preserve ownership of the data
captured when they were the ephemeral owner. At any point in the
future, when someone wants to access the data for a time period
(e.g., Airbnb’s customer service to resolve a dispute), they must
obtain permission from the ephemeral owners when the data was
generated.

Smart devices are also being deployed in shared spaces and
raise similar privacy concerns. For example, conference rooms have
frequently changing lists of occupants, so control over its devices
and their data must be flexible enough to support a constantly-
changing association between devices and users. Complicating
matters further, several people share the space simultaneously, so
authorization needs to support ephemeral ownership groups. When
a future request is made for data owned by such a group, the system
needs to establish that its members consent according to an agreed-
upon policy.

To achieve this vision, we design a suite of protocols for the
essential operations in typical device lifecycle: device initialization,
claiming ownership, routine control and data storage, and third-
party access and revocation. We tackle a number of challenges to
fulfill our design goals. To support frequent and efficient changes
in ownership, we group data into small time segments, and use
unique session keys to denote ownership of each segment. To sup-
port variable-sized groups, we leverage Shamir Secret Sharing [79]
to distribute control across stakeholders. However, the smaller the
segment duration is, the more data keys are needed for decryption.
We introduce another layer of encryption blocks to aggregate data
keys and facilitate fine-grained data sharing. Finally, to enable data
access revocation with low communication overhead, we incorpo-
rate key homomorphic encryption [18, 85] to enable the storage
provider to re-encrypt contents on the user’s behalf without being
able to decrypt it into plaintext.

To mitigate the potential design vulnerabilities, we formalize
our security goals and model the TEO protocol specification with a
well-known protocol verifier ProVerif [15] to ensure TEO’s security
and correctness. We address several modeling challenges of TEO,
particularly in formalizing group ownership, key splitting, and re-
vocation. This iterative process of modeling, verifying, and revising
our protocol uncovered several vulnerabilities in our design along
the way. In the end, we were able to prove all specified security
properties, including secrecy, mutual authentication, resilience to
data spoofing, and revocation, for variable group sizes.

We implement an open-source TEOprototype1 as a cross-platform
library and develop client applications for mobile devices, single-
board computers, and traditional Linux machines. We integrate
three real-world IoT applications with TEO to show how they can
preserve owners’ private data and enable direct control over their
devices. We also show that integrating these applications using
TEO’s API requires minimal changes to their existing codebases.
Our evaluation results on both micro-benchmarks and real-world

1Our code and formal security models are available at https://github.com/synergylabs
/TEO-release.

apps show that TEO is indeed practical and incur insignificant bat-
tery overhead on mobile devices. Specifically, one-time operations
such as initializing devices and claiming ownership take ≤187 ms.
Meanwhile, repetitive operations such as data storage depend on
the data size and their overhead is dominated by the upload speed
to the storage provider. For smaller files, TEO’s overall latency is
101-308 ms, while for larger files, TEO incurs 7-25% extra overhead
when compared to the baseline latency of just uploading the data.

In summary, we make the following contributions:
• We motivate the need for stakeholders’ privacy in smart de-
vice deployments and identify the challenges arising from
the conflicts between the power of device administrators
and the lack of protection for users.

• We propose TEO to enable ephemeral ownership for IoT de-
vices by splitting the fixed IoT owner role into different
entities. We design a set of protocols to enable TEO, cover-
ing device operations, access management, revocations, and
group ownership.

• We encode all TEO operations as models and verify that they
satisfy goals of confidentiality, authentication, and correct-
ness using the symbolic verifier.

• We implement the TEO protocol as an open-source, cross-
platform library and integrate three real-world IoT appli-
cations with TEO with minimal changes. Our evaluation
shows TEO incurs low overhead with ≤187 ms for one-time
operations and 7-25% added latency for repetitive operations.

2 RELATEDWORK
Stakeholder Privacy. Recent work has identified the challenges
due to the discrepancy between decisionmakers and device users [22,
41, 91], partially motivating the need for stakeholder privacy. Some
of this work examines privacy issues from the perspective of by-
standers [11, 88] and incidental users [21]. TEO further expands the
set of stakeholders and, more importantly, designs and implements
a novel system to address several practical challenges such as flexi-
ble group ownership, preserving data ownership, and access control
and revocation. Moreover, research on preventing intimate partner
violence (IPV) for smart devices [33, 34, 40, 70, 84] also echoes our
goals for stakeholders’ privacy. TEO-enabled devices should protect
all users’ security and privacy and prevent over-privileged admins
in the status quo. However, addressing IPV issues is more difficult
since tech-savvy abusers can just avoid using TEO-enabled devices.
Smart Device Access Control. Motivated by real-world security
incidents and research results that highlight the risks stemming
from mismanaged IoT delegation chains [89], researchers have
proposed many improvements and novel access control systems
for smart devices, as surveyed by He et al. [42]. Prior work have
proposed improving access control policy language with expres-
sive authorization logic [10] and contextual information about the
home environment [31, 46, 75]. Specifically, Kratos [80] designs an
access control system over multi-user multi-device-aware smart
homes. Complementary to providing granular access control from
a temporal aspect, I-Pic [1] proposes a novel approach to enforce
privacy policies for pictures owned by groups, while Hivemind [51]
introduces mechanisms to enable collectively control of shared
public IoT actuators. Moreover, many decentralized authorization

303

https://github.com/synergylabs/TEO-release
https://github.com/synergylabs/TEO-release

TEO: Ephemeral Ownership for IoT Devices to Provide Granular Data Control MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

Table 1: Related work on smart home access controls compared to TEO as we will elaborate in Section 2.

Work Temporally granular
access control

Frequent changes in
device-user association

Exclusive user
control

No trusted
central storage

Formally security
guarantee

Expressive policy
languages [10, 31, 46, 75, 80] Yes No No Partial No

Decentralized
authorization [4, 27, 73, 76] Yes No No Yes No

Cryptographic access
control [53, 77] Yes No No Yes Yes

TEO Yes Yes Yes Yes Yes

User Device

Admin

Data
Requester

Untrusted
Storage

1
2a

2b

3

3

4

5

6

Figure 1: Overall TEO workflow. An admin initializes the
device (1). Next, the user claim device ownership with the
admin’s pre-approval (2a and 2b). During normal operation
(3), the device encrypts users’ data and uploads it to storage.
A requester can download the data (4), but needs the owner’s
approval to decrypt it (5). To revoke access, the user can
directly issue a request to the storage provider (6).

frameworks, including Wave [4] and several blockchain-based ap-
proaches [8, 27, 73, 76], further eliminate the need for central trusted
entities. Finally, the use of novel cryptographic constructions to
facilitate access control and delegation has been present in several
instances of recent work [44, 53, 56, 68, 77, 78].

Table 1 compares TEO with some of the closely-related smart de-
vice access control mechanisms. In summary, TEO aims to provide
users with exclusive control over IoT devices and their data, while
previous approaches using delegation chains cannot provide such
support since the root and upstream nodes in the chain (admins and
floor managers) inherently retain control as well. Moreover, TEO
provides mechanisms for frequent, flexible device-user associations,
enables dynamic group ownership for shared devices, and does
not rely on trusted third-party services. Furthermore, by formally
verifying the protocol underlying TEO’s we can provide strong
security guarantees that many previous approaches are unable to.
Protocol Verification. Protocol verification is widely used by
many research projects, as surveyed by prior work [9, 16]. Verifiers
are very helpful in ensuring the security properties of standardized
protocols with real-world deployments such as TLS [12, 23], Blue-
tooth [87], and IoT messaging protocols [86]. In addition, projects
like Koi [37] and SST [50] also leverage protocol verifiers to assist
the development of novel protocols for mobile and IoT platforms.
Taking a similar approach, we integrate verification deeply with
TEO’s design process to iteratively refine and correct uncovered
security bugs while addressing several modeling challenges.

3 SYSTEM OVERVIEW
To address stakeholders’ privacy and security concerns, we envision
a new model of device ownership that protects the interests of both
the device users and its administrators. We propose TEO – IoT
Ephemeral Ownership – that grant users, as ephemeral owners, full
control over the device’s operations. Historical data collected by the
device will always belong to the ephemeral owners. When someone
wants to access the data, they have to get permission from all the
data owners (stakeholders). While the device administrators decide
who can claim the device to become an ephemeral owner, they
cannot interfere with the device’s operation or access private data
captured by it without the owners’ approval. To help contextualize
TEO’s workflow, we use a running example of a group of friends
renting an Airbnb house for the rest of this section.

The high-level TEOworkflow is illustrated in Figure 1. The admin
(e.g., Airbnb host) first installs the IoT device and initializes it. (Step
1). Afterward, the device is ready to be claimed by new owners
only if they are authorized by the device admin. The potential users
(e.g., Airbnb guests) all have a user agent program running on their
phones. After booking their reservation, they need to ask the host
to issue “pre-auth tokens” with everyone’s public key (Step 2a).
Pre-auth tokens prevent unauthorized people such as malicious
neighbors from accessing the device. When users arrive at the
Airbnb rental, the user agent on their phones initiates a process to
claim the device (Step 2b). As the groupmembership changes (users
join and leave), the device dynamically adjusts the set of owners.
During normal operation, the device protects its stakeholders in
two ways. First, if the device receives commands to perform actions
(e.g., open the door, adjust the temperature), it needs to ensure the
command is authorized by the current owners (omitted from the
figure). Every command includes a certificate with user-generated
signatures, which the device can verify using the current owners’
public keys. Second, the device preserves users’ data ownership
with a series of encryption operations and distributes individual
data keys to the set of owners (Step 3). To facilitate future data
access and reduce users’ storage overhead, TEO-enabled devices
directly upload the encrypted data to any untrusted cloud storage
provider. When any entity wants to request access to this encrypted
data (Step 4), they need to seek the permissions of the original
owner(s) to decrypt it (Step 5). Later on, if a user decides to revoke
the access, they can directly contact the storage service provider and
provide re-key tokens (Step 6) generated with key homomorphic
encryption. This special cryptography primitive allows the storage
provider to switch encryption keys of the ciphertext by directly

304

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Han Zhang, Yuvraj Agarwal, and Matt Fredrikson

applying user-provided tokens. In other words, key revocation can
be performed by the storage provider on the encrypted data itself
without having to decrypt it first.

3.1 Target Use Cases
TEO aims to provide ephemeral owners with full control over who
can access their data and when regardless of data types. Therefore,
TEO is well suited for applications and IoT devices that store oper-
ational data that could contain sensitive information about their
users, such as camera and speaker recordings or sensor readings.
For data accesses, we primarily focus on scenarios where data re-
questers want to use historical data for analysis, such as to train
machine learning models or to recall past events.

Since TEO devices maintain an up-to-date list of current owners,
we can extend TEO to enforce real-time access control of the de-
vice as well. Consider, for example, a smart door lock. After being
claimed by a new user, this lock should reject commands issued by
previous owners. To achieve this, the device can require that all
incoming commands include an authorization certificate signed by
the owner, and we implemented a simple application as part of our
case studies. Although not the current focus of TEO, we believe it
would be a useful future direction to enrich certificate designs with
proof-carrying authorizations [6, 10, 13, 54] for more expressive
policy specification languages.

TEO targets a variety of deployment scenarios such as rental
homes and shared offices. Specifically, they have different design
requirements and considerations. In rental homes (e.g., Airbnb), the
host sets up smart devices and lets guests use them. Guests have
lower churn rates (stay a few days at least) and smaller group sizes.
Sometimes, a single owner would suffice as the group implicitly
trusts each other if they stay at the same place. In contrast, smart
devices in shared offices and conference rooms have more frequent
changes in owners and group members would prefer an equal
role in decision making. These devices would be managed by the
building managers, and they may have more insight on users’ daily
routine (e.g., which floors and rooms they are likely to occupy).
Building managers can potentially use this information to improve
the practicality of TEO. For example, they can selectively issue
pre-auth tokens to conference rooms based on a user’s calendar
events.

3.2 Design Goals
Flexible Association of Devices and Users. We expect frequent
ownership changes in physical spaces with smart devices. An
Airbnb may see ownership changes that span days, while shared
spaces in smart buildings (e.g. conference rooms) may see owner-
ship changes even hourly. Moreover, multiple users can share an
office and hence be collectively impacted by the devices. Ideally,
all stakeholders should have a say in controlling the device and
accessing the data it collects. Unfortunately, existing smart home
access control systems often assume a static group of user(s) make
all these decisions.
Preserving Data Ownership. Data collected by smart devices
should always belong to the group of users present at the time
of capture. Anyone trying to access the data should request the
data owners’ permission. Most importantly, dynamically changing

ownership of the device’s users and administrators should not
affect historical data ownership. This requirement ensures that
users preserve their control over the private data even if they no
longer own the original device in the future.
Decentralized Trust. Users should be able to manage access re-
quests without relying on third parties. Centralized access control
systems, managed by individual companies and building owners,
require complete trust in these entities and in their ability to protect
users’ data and enforce access policies. In return, centralized sys-
tems provide an efficient solution for processing access requests and
sharing data. On the contrary, we want to empower users to decide
who should have access to their data themselves while benefiting
from the performance and availability of cloud services.
Formally Verified Security. Our goal is to provide formally veri-
fied security guarantees for our proposed TEO system. The main
components of TEO are a series of complex communication proto-
cols designed for multiple entities in IoT deployments. Therefore,
we encode our protocol specifications into models and verify their
security and correctness under our stated threat model in Section 5.
After several rounds of refinement, our streamlined TEO design
provides assurances of security and correctness.

3.3 Threat Model
We designed TEO under the assumption of a powerful attacker,
who can monitor all communications between users, devices, and
the third-party storage provider, attempts to undermine its goals by
either (1) controlling the device without the active consent of the
ephemeral owner, (2) accessing the data generated by the device,
which should only be accessible by the ephemeral owner, or (3)
impersonating one of these parties. This follows the Dolev-Yao
network attacker model [26] used in our formal analysis (Section 5).
Concretely, such an attacker might correspond to someone in the
vicinity of the device, a malicious admin who wishes to violate the
privacy of an ephemeral owner, or a previous ephemeral owner
who aims to extend their control of the device and its data past the
agreed-upon terms.

We assume that local devices are trusted to correctly execute the
protocol, i.e. the TEO-enabled device has not been backdoored or
rooted, and will not leak data, encryption keys, or bypass autho-
rization checks. We assume that the third-party storage providers
may be passively malicious (i.e. honest-but-curious): they might
attempt to extract private information from the data they receive,
but will faithfully execute the TEO protocol as specified. This is
consistent with using reputable cloud services, with whom users
may not trust storing cleartext data, but for whom the reputational
risk stemming from actively-malicious behavior is too great.

Our formal analysis (Section 5) is in the symbolic model, so
we must also assume that the cryptographic primitives used by
the protocol are secure against computational attacks. Likewise,
our analysis does not consider information that might be leaked
from metadata (e.g., the identity of users who participate in the
protocol, from their public key certificates), nor semantic informa-
tion that might leak through traffic analysis (e.g., inferring user
behaviors by observing the timing and sizes of encrypted network
packets). While these may provide opportunities for attackers to

305

TEO: Ephemeral Ownership for IoT Devices to Provide Granular Data Control MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

learn unwanted information in certain settings, we leave careful
consideration of these risks to future work.

4 TEO PROTOCOL
We now describe the TEO protocol and the workflow between
device administrators, users, storage providers, and devices. We
start by introducing the key challenges that we sought to address
in our design and describing our notation.
Granular Ownership & Data-Sharing. First, we envision TEO’s
use in settings where device ownership changes frequently, and the
duration of ownership varies drastically (e.g., using a conference
room for tens of minutes, or renting a house for several days). We
accommodate these in TEO by partitioning the ownership period
into relatively small segments, with each segment tracking its set
of owners (potentially distinct) from adjacent segments. A new
user wishing to claim (potentially shared) ownership of a device
takes effect at the start of the next available segment. This approach
facilitates fine-grained data sharing of selected time windows of
data rather than all-or-nothing sharing. However, to do so requires
generating fresh keys even when ownership remains the same
across segments. Configuring a relatively small segment interval
affords flexible and responsive transitive ownership, at the cost of
the corresponding overhead of managing cryptographic state for
each segment, and additional rounds of TEO communication.

The storage overhead introduced by this scheme may be signifi-
cant for mobile user agents. However, for many of the envisioned
use scenarios for TEO, data sharing requests are likely to access
several contiguous segments, e.g., in the case of streaming video
or sensor readings. Thus, to mitigate the storage overhead, we de-
signed TEO to securely store groups of keys from a single session
on the untrusted cloud storage, so that the user agent is only re-
sponsible for maintaining a single key for the entire session. This
mechanism also enables efficient group ownership, using Shamir
Secret Sharing [79] to split data block keys across group members.
Efficient Revocation. Finally, efficient key revocation is challeng-
ing, as it is infeasible for resource-constrained user agents to down-
load, locally re-encrypt, and re-upload ciphertexts to the storage.
We leverage key-homomorphic encryption [18, 85] to facilitate re-
encryption directly on the untrusted storage provider, requiring
users to only generate fresh rekey-tokens.

4.1 Notation
We use three main encryption primitives in our protocol. Each is
denoted by Enc(·) for encryption and Dec(·) for decryption, but
vary by the set of keys that they take. Symmetric-key encryption
is represented as Enc𝑘 (𝑛,𝑚) with key 𝑘 , nonce 𝑛, and message𝑚.
Long messages are concatenated with multiple parts (𝑚1 | · · · |𝑚𝑛).
Encrypting a message with a recipient’s public key is denoted by
Enc𝑝𝑘𝑅 (𝑚) where 𝑝𝑘𝑅 is the receiver’s public key. We use public-
key authenticated encryption to protect the message’s confidential-
ity and integrity when the public keys of both parties are known,
denoted by Enc⟨𝑠𝑘𝑆 ,𝑝𝑘𝑅 ⟩ (𝑛,𝑚) where 𝑠𝑘𝑆 is the sender’s secret key.
Finally, we use key homomorphic encryption from Sieve [85] to sup-
port revocation, and denote this operation by SieveEnc𝐾𝑠 (𝑛𝑠 ,𝑚),
where 𝐾𝑠 is the Sieve key.

4.2 Device Initialization
New devices need to go through a one-time initialization process
and obtain a valid device proof (𝐷𝑃), as illustrated in Figure 2a,
before they can start regular operation and accept new owners.
The device proof is necessary for the device to demonstrate its
authenticity to potential owners in later steps. To facilitate mutual
authentication, devices and administrators need to establish an
out-of-band communication channel to share setup keys. This is
common with smart devices using existing solutions including QR
codes printed on devices, physically-printed passkeys packaged
with the device, and short-range wireless communication [69]. Our
prototype implementation uses QR codes to share setup keys in this
phase of the protocol. If the device needs to change its administrator,
it must be reset, and the initialization process needs to be completed
again with fresh out-of-band key material. Note that this is different
from changing ephemeral owners, which we describe next.

4.3 Device Ownership Management
Device Discovery. When users enter a new environment, they
can discover TEO-enabled devices to obtain public information
about the device, such as its public key and admin information.
This can be achieved in several ways. First, they can locate the
device and scan the QR code dynamically generated and displayed
on the device. However, many IoT devices do not have displays to
provide such functionalities. Alternatively, the device can adver-
tise its presence and communicate this information over a local
network, similar to service discovery functions used in existing pro-
tocols [7, 67, 81, 92]. Users broadcast discovery requests to all local
hosts and TEO devices will respond with their information. Since
this request is broadcast, users may receive responses from devices
located in nearby rooms and offices. To reduce false positives, we
envision several potential extensions to improve TEO’s usefulness
and practicality in future deployments. First, the reply messages can
include additional information about the device’s location, so users
can choose the correct device based on their own location. In addi-
tion, admins can decide who are capable of claiming certain devices
by restricting pre-auth tokens to users. For example, Airbnb hosts
can give tokens based on guests’ emails, and building managers
can provision tokens based on users’ locations (buildings, floors,
etc.). Finally, the device can ask its current occupants to moderate
new users’ join requests since they can physically confirm whether
the new users are in the room.
Proximity Detection and Duration Setting. We propose a Blue-
tooth Low Energy (BLE) based proximity detection mechanism for
the TEO enabled device to detect when ephemeral owners leave its
vicinity. For simpler scenarios such as home rentals, this might be
unnecessary since the owners’ stay has a fixed duration. However,
this mechanism would alleviate challenges in shared spaces such
as offices and conference rooms where users frequently enter and
leave. Figure 2b shows the workflow of TEO’s BLE proximity de-
tection. The device periodically generates new proximity nonce 𝑛𝑝
and broadcasts it through BLE. We do not require a high frequency
of new proximity nonce generation, since the device only needs to
know if the owner is part of the current data block recording (e.g.
one data block per minute). Since multiple users can collectively
own the same device, we set the device in BLE beacon mode so it

306

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Han Zhang, Yuvraj Agarwal, and Matt Fredrikson

Admin𝐴 Device 𝐷

Generates setup key: 𝐾

Share 𝐾 (Out-of-Band)

Generates admin
challenge:𝐴𝐶 𝑛1 , Enc𝐾 (𝑛1, 𝑝𝑘𝐴 |𝐴𝐶)

Generates device
challenge: 𝐷𝐶Enc𝑝𝑘𝐴 (𝐴𝐶 |𝐷𝐶 |𝑝𝑘𝐷)

Creates device proof: 𝐷𝑃 = Sign𝑠𝑘𝐴 (𝑝𝑘𝐷)
𝑛2 , Enc⟨𝑠𝑘𝐴,𝑝𝑘𝐷 ⟩ (𝑛2, 𝐷𝐶 |𝐷𝑃)

(a) Device initialization.

Device 𝐷User𝑈
Device Discovery

Generates proximity nonce: 𝑛𝑝
BLE Beacon advertise 𝑛𝑝

Match device from discovery results

TCP/IP Heartbeat: 𝑝𝑘𝑈 , 𝑛𝑝

(b) Proximity detection.

Admin𝐴 User𝑈𝑝𝑘𝑈

Generate token: 𝑡 = Sign𝑠𝑘𝐴 (𝑝𝑘𝑈)

𝑛, Enc⟨𝑠𝑘𝐴,𝑝𝑘𝑈 ⟩ (𝑛, 𝑡)

(c) Acquire pre-auth tokens.

User𝑈 Device 𝐷𝑝𝑘𝑈

𝑝𝑘𝐷 , 𝐷𝑃 (from initialization)

Verify 𝐷𝑃 ; Generates user challenge:𝑈𝐶
𝑛1 , Enc⟨𝑠𝑘𝑈 ,𝑝𝑘𝐷 ⟩ (𝑛1, 𝑡 |𝑈𝐶)

Verify token 𝑡success, 𝑛2 ,
Enc⟨𝑠𝑘𝐷 ,𝑝𝑘𝑈 ⟩ (𝑛2,𝑈𝐶)

(d) Claim ownership.

Figure 2: Protocol workflow for device initialization and own-
ership management.

continuously advertises information without requiring an explicit
connection from the user’s phone. On the other side, the TEO app
on the user’s phone periodically sends out heartbeat messages with
the latest nonce sent within the device advertisements over BLE.
Once the device stops receiving the correct nonce from a particular
user’s phone for an extended period, it can infer that the user must
no longer be in BLE range and thus remove them from the list of
ephemeral owners. The device should be configured with proper
transmission power so only nearby users likely in the same space
can receive the BLE advertisement while reducing false positives.
This automated process is executed by the user’s phone app to
minimize user burden. However, as a fallback mechanism, users
can manually specify the duration of their occupancy in a space
(or use default values) to be included in the ownership claiming
process.

This mechanism is designed to ensure current ephemeral owners
are still within the device’s vicinity. Consequently, the device can
quickly remove stale owners that have already left the room. On
the other hand, this mechanism is not intended to limit who can
claim devices (the responsibility of pre-auth tokens) because BLE
could have high false positive rates (i.e., everyone within the range
will receive this message).
Claiming Ownership. Figures 2c and 2d illustrate the steps to
claim ephemeral ownership. First, the user acquires a “pre autho-
rization token” from the administrator (Figure 2c). The protocol
uses these tokens to prevent unauthorized access to a device, and
not to enforce more granular, device-specific usage policies. For
example, rental hosts can generate pre-auth tokens for guests with
upcoming reservations, and building administrators can give pre-
auth tokens for the devices in a specific office to those who are
allowed to use them.

Figure 2d illustrates the next step in establishing ownership. Just
as the pre-auth token establishes the authenticity of the ownership
claim to the device, the device proves its authenticity to the new
owner by issuing its device proof (𝐷𝑃) obtained during initializa-
tion. The user also generates a fresh random challenge (𝑈𝐶) to
prevent replay-enabled device spoofing. Extending this phase to
support group ownership is straightforward: each user performs
the steps in Figure 2d independently, and the device tracks the list
of ephemeral owners accordingly. The device is then responsible
for synchronizing control between its current owners.

After a user becomes an ephemeral owner, the device can en-
force access checks for incoming commands and instructions from
a cloud back-end or home automation platform (e.g., IFTTT) to
prevent previous owners from retaining controls. To support this
check, every automation applet or cloud service should obtain au-
thorization in the form of signed certificates from current owners.

4.4 Data Storage and Access
To preserve users’ ownership of data generated by the device, one
approach would be to transmit any such data directly to the user,
and let them manage it independently. This is too demanding for
mobile user agents, and even if it were not, would impose an un-
necessary burden on them. Our protocol instead uses a third-party
cloud storage provider that is honest but curious: we expect it to
correctly store data from the device and respond faithfully to users’
requests, but do not trust it to refrain from attempting to inspect
the confidential data. To protect the confidentiality of the device
data, which may contain sensor readings or video recordings that
users consider private, the device could encrypt the data before
sending it to the cloud provider, and provide the user with all of the
keys necessary to access it in the future. This poses several chal-
lenges, including how to support group ownership while managing
data-sharing and subsequent revocation requests.
Sieve Encryption. In addition to standard cryptography oper-
ations, we incorporate a key homomorphic cipher proposed in
Sieve [85] in TEO’s protocol design. Key homomorphism [18] al-
lows an entity to change the encryption key of a ciphertext without
seeing the underlying plaintext. This characteristic is well-suited
for untrusted TEO storage providers to assist in the process of

307

TEO: Ephemeral Ownership for IoT Devices to Provide Granular Data Control MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

User𝑈 Device 𝐷 Storage

Generates session ID 𝑠𝑖𝑑 , data key 𝑘 , nonce 𝑛𝑑 ;
Create encrypted data block: 𝑑′ = Enc𝑘 (𝑛𝑑 , 𝑑)

𝑢𝑢𝑖𝑑1 , 𝑑′, 𝑝𝑘𝑈

𝑛1 , Enc⟨𝑠𝑘𝐷 ,𝑝𝑘𝑈 ⟩ (𝑛1, sid)

Creates and store Sieve
key 𝐾𝑠 , nonce 𝑛𝑠

𝑛2 , Enc⟨𝑠𝑘𝑈 ,𝑝𝑘𝐷 ⟩ (𝑛2, 𝐾𝑠 |𝑛𝑠)

Creates Sieve data block: 𝑑𝑠 = SieveEnc𝐾𝑠 (𝑛𝑠 , 𝑘)
𝑢𝑢𝑖𝑑2 , 𝑑𝑠 , 𝑝𝑘𝑈𝑛3 , Enc⟨𝑠𝑘𝐷 ,𝑝𝑘𝑈 ⟩

(𝑛3, 𝑠𝑖𝑑 |𝑢𝑢𝑖𝑑1 |𝑢𝑢𝑖𝑑2)

Create metadata block for 𝑠𝑖𝑑 :
𝑑𝑚 = (𝑢𝑢𝑖𝑑1, 𝑛𝑑 ,𝑢𝑢𝑖𝑑2 |𝑛𝑠 |𝑝𝑘𝑈)

𝑢𝑢𝑖𝑑3 , 𝑑𝑚 , 𝑝𝑘𝑈𝑛4 , Enc⟨𝑠𝑘𝐷 ,𝑝𝑘𝑈 ⟩
(𝑛4, 𝑠𝑖𝑑 |𝑢𝑢𝑖𝑑3)

(a) Example data storage workflow. Nonces with numerical subscripts are local
variables, only used within the corresponding protocol flow. The orange box
indicates user-specific actions in group ownership.

User𝑈 Requester 𝑅 Storage
𝑢𝑢𝑖𝑑3 , 𝑑𝑚 , 𝑝𝑘𝑈

Generates access nonce 𝑛𝑎
𝑝𝑘𝑅 , 𝑛4 ,

Enc⟨𝑠𝑘𝑅,𝑝𝑘𝑈 ⟩ (𝑛4,𝑢𝑢𝑖𝑑2 |𝑛𝑎)

Check 𝑛𝑎 freshness; grant access
𝑛5 , Enc⟨𝑠𝑘𝑈 ,𝑝𝑘𝑅 ⟩ (𝑛5, 𝐾𝑠 |𝑛𝑎)

𝑢𝑢𝑖𝑑2 , 𝑑𝑠 , 𝑝𝑘𝑈

Obtain data key 𝑘 := SieveDec𝐾𝑠 (𝑛𝑠 , 𝑑𝑠)
𝑢𝑢𝑖𝑑1 , 𝑑′, 𝑝𝑘𝑈

(b) Example data access workflow. The requester wants to access the data
associated with 𝑢𝑢𝑖𝑑3 from the previous case. For brevity, the steps involved
with sending download requests for UUID to the storage are omitted.

User𝑈 Storage 𝑆

Generates user nonce 𝑛𝑢
Enc𝑝𝑘𝑆 (𝑢𝑢𝑖𝑑2 |𝑢𝑢𝑖𝑑3 |𝑛𝑢)

Generates storage nonce 𝑛𝑠Enc𝑝𝑘𝑈 (𝑛𝑢 |𝑛𝑠)

Selects new Sieve key 𝐾 ′
𝑠 ;

Generates rekey token: 𝛿 = −𝐾𝑠 +𝐾 ′
𝑠 ;

Generates notification nonce: 𝑛𝑛𝑜𝑡𝑖
𝑛1 , 𝑢𝑢𝑖𝑑2 ,

Enc⟨𝑠𝑘𝑈 ,𝑝𝑘𝑆 ⟩ (𝑛1, 𝛿 |𝑛𝑛𝑜𝑡𝑖 |𝑛𝑢 |𝑛𝑠)

Apply rekey token 𝛿
on block 𝑢𝑢𝑖𝑑2success, 𝑛𝑛𝑜𝑡𝑖

(c) Revocation workflow.

Figure 3: Data encryption and access workflow.

revoking data access without ever being able to decrypt the data
itself.

Storing Data. Here we explain the data storage process for a single
owner, as we will discuss group modes later. Figure 3a illustrates
how TEO addresses these challenges and the steps taken to store a
user’s data in the cloud. First, the device encrypts the data with a
freshly generated session key 𝑘 for the current time segment. We
use symmetric encryption for computational efficiency. The device
uploads the encrypted data block to the storage provider, with an
identifier 𝑢𝑢𝑖𝑑1. Next, the device obtains Sieve credentials from
current owners (Sieve keys 𝐾𝑠 and Sieve nonce 𝑛𝑠). Afterwards, the
device constructs the Sieve data block for this session and encrypts
the value of session key 𝑘 with Sieve cipher. This Sieve data block
is then uploaded to the storage provider with an identifier 𝑢𝑢𝑖𝑑2.
Finally, the device uploads a metadata block to the storage provider,
containing all the information needed to locate the encrypted data,
as well as the Sieve blocks and the nonces used for the Sieve cipher.
Meanwhile, the owner can collect bookkeeping information (such
as session IDs and block UUIDs) from the device asynchronously.

To grant access to an encrypted block, the user can distribute
the Sieve key to the requester. The symmetric key used to decrypt
the data is stored in the Sieve block on the storage provider. Fig-
ure 3b shows the process for someone to request data access. After
receiving the Sieve key, the requester can gather all the information
necessary to decrypt the requested data.
Threshold Encryption. One building block to enable group own-
ership is the well-established threshold encryption; specifically, we
use Shamir Secret Sharing [79]. At a high level, the 𝑡-of-𝑛 threshold
encryption allows protecting a secret message with 𝑛 key shares. To
decrypt the message, someone only needs to collect 𝑡 shares (𝑡 ≤ 𝑛).
The values of 𝑡 and 𝑛 must be set statically before the encryption
process begins.
Group Ownership. To extend the protocol to support group own-
ership, the device needs to collect Sieve key information from
each owner in the group by repeating the steps in the orange
box of Figure 3a. Assuming a group of owners with public keys
𝑝𝑘𝐺 = [𝑝𝑘𝑈1 , · · · , 𝑝𝑘𝑈𝑁], the device still encrypts the data with
the session key 𝑘 the same way as before, and then uploads the
result to the storage provider as (𝑢𝑢𝑖𝑑1, 𝑑 ′, 𝑝𝑘𝐺). The device then
splits the data key 𝑘 into 𝑁 key shares 𝑘1, . . . , 𝑘𝑁 . It constructs one
Sieve data block for each owner, 𝑑𝑠𝑖 = SieveEnc𝐾𝑠𝑖 (𝑛𝑠𝑖 , 𝑘𝑖), and
sends them to the storage provider as (𝑢𝑢𝑖𝑑2𝑖 , 𝑑𝑠𝑖 , 𝑝𝑘𝑈𝑖). Finally,
the device constructs a metadata block 𝑢𝑢𝑖𝑑3 that refers to each of
the owners and their corresponding Sieve blocks, and stores it on
the storage provider:

𝑑𝑚 = (𝑢𝑢𝑖𝑑1, 𝑛𝑑 , 𝑢𝑢𝑖𝑑21 |𝑑𝑠1 |𝑝𝑘𝑈1 | · · · |𝑢𝑢𝑖𝑑2𝑁 |𝑑𝑠𝑁 |𝑝𝑘𝑈𝑁)

To access a shared data block, the requester needs to seek permis-
sion of each owner and obtain the Sieve key for their share of the
data key.

We conclude by noting that threshold encryption can support
several data access policies by adjusting the threshold value 𝑡 . Cur-
rently, TEO requires that accessors have the approval of all group
members (by setting 𝑡 == 𝑛) because we want to give everyone the
right to veto. It is straightforward to extend TEO with alternative
policies (e.g., requiring majority approval by choosing 𝑡 > 𝑛/2).
In addition, a future extension of TEO can include another layer
of threshold encryption for individual users. Each user can save

308

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Han Zhang, Yuvraj Agarwal, and Matt Fredrikson

multiple key shares on different agents (laptops, phones, backup
codes) and have a threshold value 𝑡 == 1 in case they lose devices.

4.5 Revocation
TEO uses three blocks to encrypt each segment of data uploaded by
the device and to support efficient revocation of access to a given
block — the encrypted payload, a Sieve block, and the metadata
block in plaintext. If the revocation was not needed, then the design
could be simplified and storage overhead mitigated by dropping the
Sieve block, and granting access by sharing the data key directly.
Instead, our approach manages access by treating the Sieve key as
a credential so that revocation can be accomplished by having the
storage provider re-encrypt only the Sieve block, which is small in
size relative to the actual ciphertext.

Figure 3c illustrates revocation in TEO. The user generates a
rekey-token 𝛿 , and sends it to the storage provider along with
identifiers for the appropriate Sieve blocks. The storage provider
re-encrypts these blocks using the rekey-token. A benefit of this
design is the consolidation of multiple encrypted data blocks, each
with its own key, into a single Sieve block while maintaining low
overhead on the client’s side for revocation. The client can generate
a fixed size rekey token to change the Sieve data block, thereby
avoiding the need to download and re-encrypt arbitrary sized Sieve
data blocks containing multiple data keys. Unifying encrypted data
blocks in this way is especially helpful when a session contains a
series of smaller data chunks, for example, an hour’s worth of video
recording may be stored as one-minute chunks to accommodate
frequent membership changes and granular sharing, but the user is
not burdened with managing credentials for each of these chunks
individually. Additionally, each owner in a group can make access
control decisions independently by rekeying their corresponding
Sieve block.

4.6 Partial Availability
To process access requests, data owners (users in Figure 3b) need
to be online. This requirement in TEO is intentional to give users
direct control over their data, as all access requests must seek their
direct approval. However, the limitation is that even if a single
user is unreachable, no one can access the original content even if
they have everyone else’s permission already. To strike a balance
between data availability and users’ access control, the group of
users can modify the access policies at the time of data recording
to choose different values of 𝑡 for the threshold encryption (as
discussed in Section 4.4).

Moreover, individual users may lose their mobile devices and
thus lose their key shares. Aside from periodic backups, one popular
solution for implementing recovery mechanisms is to leverage
threshold encryption (asmentioned in Section 4.4 and demonstrated
by prior work [85]). We acknowledge that such a mechanism is
important for future TEO deployment in the real world.

Finally, users may be temporarily unreachable when the device
executes the data storage operation. Our protocol design ensures
that unresponsive users will not block the main data encryption
and upload functions (first step in Figure 3a). If the device cannot
reach a user, it can store the user’s key shares locally and retry
later. Eventually, the device deletes its local copy once the user is

back online. Meanwhile, since the private data have already been
uploaded, the device does not need to keep the data while waiting
for the unresponsive users.

5 SECURITY ANALYSIS
We formally model TEO using a well-known protocol verifier,
ProVerif [15], and encode several key security properties to verify
TEO’s security and correctness. In modeling TEO we address sev-
eral challenges, particularly in formalizing group ownership, key
splitting, and revocation.

5.1 Security Goals
We aim to achieve the following security goals with our TEO pro-
tocol design.

• Secrecy. A user’s private data, once encrypted by a TEO sup-
ported device, should not be accessible by anyone without
the explicit authorization of the user. For group ownership,
the policy requires that only entities with the consent of all
owners are able to access the data.

• Mutual Authentication. After the device is initialized and
claimed (Section 4.3), all parties must mutually authenticate
and agree on each other’s roles (i.e., device and admin, device
and owner must acknowledge each other).

• Prevent Data Spoofing. Attackers should not be able to
spoof data, potentially overwhelming users’ local storage
space with keys for non-existent data blocks. If the user
concludes a data store operation, then the device must have
indeed stored the user’s private data for the corresponding
session.

• Effectiveness of Revocation. If the data requester’s access
is revoked by the owner, the requester should not be able to
decrypt the data block if they download it again from the
storage provider. Conversely, revocation should only happen
when the owner requests it, and the new key should be able
to decrypt the data in the future. For groups, an individual’s
decision should not affect others (i.e., others’ keys should
still work since they did not revoke their keys). Note that
TEO does not preclude a requester from storing the already
decrypted data offline perpetually.

5.2 Modeling Protocol Workflow
We aim to identify protocol design-level bugs that may compromise
TEO’s security and privacy protections. We assume that the crypto-
graphic primitives (e.g., encryption algorithms) are secure. Hence,
we choose a symbolic verifier (ProVerif [15]) since it requires lower
human guidance and is better suited for automated analysis com-
pared to computational ones. Interested readers can refer to prior
work for a more detailed discussion of different types of protocol
verifiers [9, 14].

In ProVerif, protocols are modeled as sets of processes. Each pro-
cess can generate fresh internal variables and local secrets, such as
private keys that are hidden from the attacker. We represent each
entity (e.g., admin, user, device) as its own process that can spawn
and execute repeatedly to conduct multiple rounds of communica-
tion.

309

TEO: Ephemeral Ownership for IoT Devices to Provide Granular Data Control MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

We symbolically encode all cryptographic operations so that
incorrect credentials (e.g., decryption keys and invalid signatures)
will terminate the process’ execution. Processes communicate over
channels. Attackers can intercept, drop, or fabricate any message
over the channel. Since attackers can obtain a complete history of
all network messages, we can conservatively model the untrusted
storage provider with this general network attacker.

5.3 Modeling Security Goals
We encode every security goal from Section 5.1 with concrete
ProVerif queries to ensure TEO’s protocol design satisfies all se-
curity properties. We create unique events as checkpoints for the
execution of each process. We construct correspondence queries to
encode properties such as “if A happens, B must have already hap-
pened”. Correspondence queries can be injective, which means that
the verifier will check that there is a strong one-to-one mapping
between events. To ensure correctness, we also add reachability
queries to verify that all events are reachable during process exe-
cution; unreachable events can vacuously satisfy correspondence
queries, leading to a false conclusion of TEO’s correctness.
Secrecy. We create a private variable userPrivateData to represent
the confidential information. This variable can be shared across
different processes but remains hidden from the network attacker.
The device encrypts this variable and uploads the ciphertext to the
storage. We construct a secrecy query to verify that this variable
remains secret from the network attacker and untrusted storage
provider.

To verify that a data requester (requesterPK) can only decrypt the
data with approval from all owners (owner_1, owner_2, . . .), we con-
struct a query that the event AccessData(requesterPK, userPrivate-
Data) from the requester is preceded by GrantAccess(owner_i_PK,
requesterPK, dataUUID) events from all data owners 𝑖 ∈ [1, 𝑁].
Mutual Authentication.We encode several injective correspon-
dence queries to verify this goal. For initialization, the query states
that whenever the event DeviceAcceptAdmin(devicePK, adminPK)
happens on the device, the predecessorAdminAcquireDevice(adminPK,
devicePK) must already have occurred for the admin.

For claiming device ownership, the device needs to verify that the
user has a valid pre-auth token before accepting new owners. There-
fore, the final event UserFinishDevice(userPK, devicePK, adminPK)
on the user process should be preceded by the device-generated De-
viceAcceptUser(userPK, devicePK, adminPK, preAuthToken), which
itself should be preceded by the event that admin marks this token
as valid, AdminGrant(adminPK, userPK, preAuthToken).
Prevent Data Spoofing. When the user finishes the Sieve key ne-
gotiation in data store (Figure 3a), it produces the event UserStore-
Finish(userPK, devicePK, sessionID). This event should be preceded,
injectively, by the device side eventDeviceFinishSieve(userPK, devi-
cePK, sessionID) issued after it finishes uploading Sieve data block
to storage. Violating this query will cause users to store information
for non-existed sessions.
Effectiveness of Revocation.We encode the revocation process in
different phases, a cross-process synchronization primitive provided
by ProVerif. Operations in one phase will be inactive when the
model moves into a new phase. All processes start in phase 0. The

data requester obtains the owner’s authorization and successfully
access the data. When the user revokes access, the system transfers
into “phase 1” and Sieve data blocks in the storage are updated with
new keys. In “phase 2”, the requester downloads the data blocks
from storage but attempts to decrypt with the previously cached
Sieve key. We verify that SucceedDecryptOldKey(dataBlockUUID)
should be unreachable. As group size increases, we add more phases
and pick one owner to revoke access at each phase. By the end of
every round, the requester’s cache of other owners’ Sieve keys is
still valid, thus we also verify that one owner’s decision to revoke
will not interfere with other users’ keys.

Finally, we implement an injective query to ensure that the stor-
age provider only applies to rekey tokens upon the data owner’s
request. This query led us to identify a bug in an earlier protocol
draft that an attacker can replay rekey requests, rendering users’
data inaccessible by anyone. This finding prompted us to add addi-
tional nonces to our protocol.

5.4 Modeling Group Ownership
To support group ownership, we use Shamir Secret Sharing to dis-
tribute data keys among co-owners. However, ProVerif currently
lacks language support for this type of threshold encryption [62],
particularly for encoding variable-sized sets of co-owners. To ad-
dress this, we encode the size of the owner set statically in the
model. All parameters of cryptographic operations must also be
set statically, including the number of users and their positions.
We have to create unique processes for every user in the group to
handle different keys and internal states. As the group size grows,
we have to expand these arguments and processes accordingly.
Note that the implementation of different user processes is nearly
identical, except for minor differences in user indices. Therefore, we
developed a preprocessor language that automates the construction
of static models with specified group sizes. We express the protocol
flow with template functions and parameterized values. In this way,
we can implement a common user process and, during compila-
tion, expand this template into a variable number of concrete user
processes.

6 IMPLEMENTATION
We provide an open-source repository2 that includes the source
code of TEO and the details of the security protocol modeling. We
implement the core TEO protocol as a shared cross-platform library,
libteo, with public-facing APIs. The library is written in 8945
lines of C++, excluding third-party libraries and evaluation tests.
We use libsodium [59] as the main cryptography library, containing
implementation for standard secret-key and public-key cryptog-
raphy operations, with X25519 key exchange, XSalsa20 stream
cipher encryption, Poly1306 MAC authentication, and Ed25519
signatures. In addition, we leverage the Crypto++ [24] library to
implement Shamir Secret Sharing and the key splitting function-
ality for group ownership. Since the authors of Sieve [85] did not
release their code, we re-implement Sieve operations using the
Ed448-Goldilocks elliptic curve library [39] and consulted with

2https://github.com/synergylabs/TEO-release

310

https://github.com/synergylabs/TEO-release

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Han Zhang, Yuvraj Agarwal, and Matt Fredrikson

them over email with our implementation details to ensure correct-
ness. We use FlatBuffers [35] to serialize TEO’s protocol message
in a cross-platform format.

Our TEO prototype consists of client applications for multiple
platforms. We developed a prototype Android app with support
for the users’ and admins’ functionalities in 3350 lines of Java code.
We use Android Beacon Library [65] for BLE scanning. It includes
libteo as a native C++ library and uses Java Native Interface to
execute API calls. We also implement test clients for different roles
on x86 Linux desktops and popular single-board computers with
ARM SoCs (Rasberry Pi 4 and Pi Zero W). Moreover, we develop a
storage provider daemon as a key-value store for encrypted data
contents using LevelDB [36] and with support for TEO revocation.
In total, we implement these agents in 1206 lines of C++ in addition
to the libteo library. TEO’s protocol model contains 940 lines of
ProVerif code with the group templates. After compilation, these
models include 917, 1258, and 1599 lines of ProVerif code for group
of size 1–3. We observed an exponential growth in verification time
and memory consumption with larger group sizes. For example, on
a 16-core machine with 64 GB RAM group size=1 took 3.62s, 258 MB
memory while group size=3 took 17+ hours and consumed 50 GB.
While we did not verify higher group sizes, our model generalizes
to any group size.

7 EVALUATION
We evaluate TEO’s design and our prototype implementation, with
a suite of microbenchmarks and by integrating TEO with several
real-world IoT device applications. Our evaluation results demon-
strate that TEO introduces nominal communication and power
consumption overhead over a baseline system without TEO’s se-
curity primitives. One-time operations, such as device initiation
and ownership claims, add an additional latency of up to 187 ms.
Meanwhile, devices that continuously upload TEO encrypted data
experience a performance overhead mostly dominated by the net-
work communication speed: for larger files, TEO incurs 7–25% extra
latency compared to a baseline of just uploading the same size data;
for smaller files (10KB – 1MB), TEO’s storage latency is 101-308
ms.

To characterize the overhead of TEO’s primitives, we select rep-
resentative IoT devices and client platforms, with different compu-
tational capabilities. We developed a TEO mobile app and installed
it on Android phones (Nexus 5X), serving as TEO client agents
for users and admins. For operations requiring human interaction
(e.g., deciding whether to grant access or issue pre-auth tokens), we
skip the user confirmation step to automate the tests so as to only
measure the overhead of TEO’s protocol communication and not
the user reaction time. We chose off-the-shelf single-board com-
puters, namely Raspberry Pi 4 (1.5 GHz 4-core, 4GB RAM,$35–$55)
and Raspberry Pi Zero W (1 GHz single-core, 512MB RAM, $10), as
TEO-endabled IoT devices. Both Android phones and IoT devices
connect to our campus WiFi infrastructure as other devices in the
building. On the other hand, we launched our prototype storage
providers and agents for requesting data accesses on Linux ma-
chines (8-core, 16GB RAM) with wired connections to the same
infrastructure.

Table 2: Average latency (in ms) for TEO operations, with a
performance comparison of different IoT device hardware.
We also measure battery usage for the TEO phone app (in
𝜇𝐴ℎ). Data access and revocation operations do not involve
devices’ participation.

Operation User App
Battery (𝜇𝐴ℎ)

Average Latency ± Standard
Deviation (ms)

RPi 4 RPi Zero
Initialize Device 20.18 44 ± 9 65 ± 35
Acquire Pre-Auth

Token + Claim Device 34.43 187 ± 52 258 ± 128

Claim Device 21.19 67 ± 10 94 ± 31
Store Data, 1MB 43.03 308 ± 57 684 ± 155
Access Data, 1MB 22.25 170 ± 54
Revocation and
re-encrypt 25.07 62 ± 15

7.1 Microbenchmarks
Latency. We first measure the overhead of each TEO operation
in terms of the end-to-end latency from initiating the operation
to the time it completes (Table 2). We repeat every operation 100
times and report the mean and standard deviation latency. Several
operations such as device initialization (∼44ms) and revocation
(∼62ms) are lightweight, while the initial claiming of the device
has higher latency (∼187ms). We analyze recurring TEO operations
(data store) in further detail. Switching the device from Raspberry Pi
4 to Pi Zero, we observe modest slowdown (up to 2.2x for data store)
but all operations finish within 65–258 ms. This is understandable
since they have drastically different compute capabilities. Overall,
most TEO operations are only needed once or very infrequently,
so a ≤187 ms latency increase has a modest impact on end users.
Phone Battery Impact. Table 2 reports the battery consumption of
TEO operations involving the user’s phone app, as the average 𝜇𝐴ℎ
over 100 iterations. We currently use the battery levels reported by
Android since they seemed sufficient for our use case [5], leaving
more precise energy measurements for future work [57, 58]. Our
test Nexus 5x has a rated battery capacity of 2700𝑚𝐴ℎ. Operations
such as providing Sieve key share for the device to store data (43.03
𝜇𝐴ℎ) once a minute consumes just 2.2% of the battery life over a
24 hour period. Proximity detection (Section 4.3) for group mem-
bership supported by BLE scans also affects battery life depending
on the frequency. We measure the battery drain speed over a pe-
riod of 5 minutes and calculate the difference when the phone is
idle. Continuous scanning quickly drains the battery at a speed of
2090 𝜇𝐴ℎ per minute. However, a simple optimization (increasing
the BLE scan interval to once every 10 seconds) reduces the drain
to 66.2 𝜇𝐴ℎ per minute, consuming 3.5% of the battery over a 24
hour period. With additional optimizations (iBeacon-based BLE
entry/exit detection, reducing scan intervals), the energy impact of
proximity detection can be reduced further.
Data Store and Sizes. The latency overhead of recurring opera-
tions, such as encrypting the data on the device and then transmit-
ting it to be stored on a storage provider, depends on the size of
the data, as reported in Table 3. We omit other overheads in the

311

TEO: Ephemeral Ownership for IoT Devices to Provide Granular Data Control MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

Table 3: Data store operation overhead breakdown for Rasp-
berry Pi 4, reported as mean values in ms.

Data
Size

Data
Encryption

Data
Upload

Total Time (vs.
Upload Time)

10KB < 1 19 101 (5x)
100KB 2 29 116 (4x)
1MB 25 127 308 (2.42x)
10MB 168 1429 1791 (1.25x)
100MB 1577 15256 16293 (1.07x)

Table 4: Average latency and standard deviation for storing
1MB data for different group sizes. We emulate multiple
owners as different processes on a PC and have the device
repeatedly store data 100 times. We also include a single user
running a TEO phone agent.

Group Size Phone Emulation
1 1 5 25 50

Average
Latency (ms)

308
±57

234
±156

316
±30

634
±58

1085
±85

breakdown table since they do not scale significantly with data
sizes. For example, Sieve data blocks (containing the data keys) are
independent of the size of the data in this experiment and have the
same size since we use a single key to encrypt the data.

As the data size increases, the overheads associated with data
encryption and upload scale proportionally, dominating the latency
for using TEO for large data sizes. For example, the total latency is
just 1.25x compared to the time spent on uploading the 10MB files
(since TEO’s symmetric encryption produces ciphertext the same
length as the plaintext). For larger files (100MB), the relative latency
of TEO decreases further to 1.07x upload time, showing that TEO’s
overhead amortizes as the data size increases. For smaller data
sizes (e.g. 10KB - 1MB), TEO’s protocol overhead is still relatively
small (≤ 308 ms) given the asynchronous nature of data storage
operations.

To help reduce TEO overhead for large files, we implemented an
optimization to pipeline data encryption and upload. We split large
data into fixed chunks (1MB by default) and start uploading them
as soon as the encryption of that chunk completes. Therefore, for
large files such as 100MB, the sum of encryption and upload time
exceeds the total elapsed time.
Group Ownership.We measure the performance impact of vari-
able group sizes on the device’s data store operations. We emulate a
large number of users in a group using a standalone Linux desktop
with a wired connection to the campus network. Each user in this
scenario is a separate process on this desktop. The device still per-
forms normal TEO operations, but it needs to communicate with
all users. Table 4 shows the average latency for such operations
for groups of up to 50 members. To provide a comparison between
our emulated users forming a group and a real phone client, we
also include the latency for a single user on an Android phone (first
column). We observe a small performance discrepancy between the
emulation platform (Linux) and the real Android phones (308 ms
vs. 234 ms). As the size of the group increases, the main cause of

Table 5: Total changes required (lines of code) to integrate
existing applications with TEO. These changes mostly focus
on redirecting data storage to the co-located TEO device dri-
ver program. See more details in Section 7.2.

Applications Motion [63] Mycroft [64] Doorlock [38]
Language C++/Python Python Node.js

Lines Changed 31 73 121

the additional latency is the resource contention on the device. For
every owner, the IoT device spins off a new thread to encrypt their
key share with Sieve and upload the Sieve data block to the storage.
Because the Raspberry Pi 4 only has 4 cores, threads for different
owners cause CPU contention. Even with a large group size of 50
users, the slowdown is just 5x compared to the single-owner case.

7.2 Case Studies
We integrate three real-world smart IoT applications into TEO-
enabled devices (Raspberry Pi 4). We searched for popular open-
source smart apps on GitHub and tutorial websites and finalized one
for each of the interesting categories. In all three cases, we extend
the original apps with new functionality using TEO operations and
primitives. Table 5 shows the total changes in terms of lines of code
we made to each application. In general, the integration process
incurs minimal changes. We develop a TEO driver (as part of our
TEO prototype) that manages the TEO runtime on the device. It
opens API interfaces as REST endpoints exposed only to localhost
so that the application can leverage the driver to store data and
verify command certificates.
Motion Camera.Motion [63] is a smart camera app that records
video clips whenever it detects motions. The users can later review
these recorded events. To preserve privacy, all data are saved locally.
We edit Motion’s configuration file and implement a post-recording
hook program that uses TEO to encrypt and store the video record-
ing. This integration not only protects user data but also increases
the limited local storage space.

For evaluation, we set the length of event recording to be 1
minute, repeatedly triggering event detection over 100 times to
measure runtime latency. We set the group size to be a single user.
On average, the 1-minute clip is around 22MB and the TEO driver
takes around 2879 ms to process the storage request. These perfor-
mance numbers are consistent with our microbenchmark results
(Table 3). Since it only takes ∼ 3 seconds to store a one-minute long
video recording, we believe that TEO integration would be a useful
and practical extension for the Motion app.
Speaker with Voice Assistant.Mycroft AI [64] is a smart speaker
app similar to Amazon Echo and Google Home. Users trigger it with
a “wake” word, followed by their instructions. A critical privacy
concern with smart speakers is that they can record user interac-
tions and upload audio clips to train better machine learning models
and for internal analysis [19, 20]. We extend Mycroft so that users’
private audio recording data are protected with TEO encryption
and access control. Every time a wake word is detected, Mycroft
starts recording the following user commands and uploads them
to a TEO storage provider. Compared to video data, audio clips are

312

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Han Zhang, Yuvraj Agarwal, and Matt Fredrikson

much smaller and highlight the extra overhead in TEO communica-
tion. On average, the audio clips are around 72KB, and it takes the
app 235 ms to finish storing these clips. This result is slightly higher
than our microbenchmark, highlighting that applications storing
smaller pieces of data are more sensitive to TEO’s overhead and
cross-app communications (between Mycroft and the TEO driver).
However, we consider this overhead still acceptable since storing
clips is done asynchronously and does not block the users’ normal
interaction with the device.
Smart Doorlock. Complementary to the previous two cases, we
implement a smart doorlock application that shows how TEO can
protect owners in real time and prevent unauthorized control of
the device from non-stakeholders. We develop this app based on
an open source door lock project [38] and utilize the Blynk IoT
Library [17]. With TEO integration, the app can check for access
authorizations accompanying every incoming command, and only
executes valid commands from current owners. Our evaluation
measures an average increase of 11 ms in latency due to certificate
check on the TEO runtime. Low overhead is important in this
case, since the process is now on the critical path of the device’s
functionality and user interactions.

8 DISCUSSION AND LIMITATIONS
Support for Less Capable, Lower-Power Devices.Currently, our
TEO prototype supports mobile phones, Linux machines, and Rasp-
berry Pis. These platforms are equipped with modern ARM or x86
processors. Unfortunately, porting TEO to other low-power devices
(e.g. using the popular ESP32 series or the ARM Cortex M3 series) is
more challenging for two reasons. First, TEO makes extensive use
of several heavy-weight cryptography libraries, which are not yet
supported by microcontroller-based architectures in these devices.
Second, assuming that all of TEO’s dependencies have been ported,
TEO could encounter high performance overhead due to limited
processing power and resources (e.g., ESP8266 only has 160Mhz
CPU and 50KB memory [30]). It would be an interesting future
research direction to extend TEO to these lower-power class of de-
vices and, indeed, recent works have proposed novel cryptography
protocols to enable public-key cryptography on them [2].
Reducing the Trusted Computing Base. TEO assumes that IoT
devices and user mobile phones are trusted to protect user data.
Compromised devices can bypass TEO and directly leak users’
private data, or impersonate other devices through Cuckoo at-
tacks by relaying network traffic [71]. Malware-infected phones
can steal credentials to users’ data. Furthermore, TEO assumes
that the cloud storage services correctly perform the computa-
tion for re-encryption to work. To reduce the trusted computing
base, one promising future direction is to expand TEO with a se-
cure hardware infrastructure. For example, we can perform se-
curity critical operations inside the Trusted Execution Environ-
ment (e.g., Intel SGX, ARM TrustZone) as inspired by many prior
works [8, 61, 74, 82, 94] and leverage Trusted Platform Modules
and remote attestations [3, 45, 52, 66, 72] to ensure the integrity of
TEO programs and operating systems.

Specifically, to mitigate the threats of compromised smart de-
vices, we can borrow insights from many recent works and develop
a trusted TEO hub. The hub can act as a network access point for

local devices and require all egress network traffic to be encrypted
with TEO [29, 43, 83, 93], or redesign the IoT application program-
ming architecture and have the trusted hub to process all user’s
private data [47, 49, 90].
Deployment Challenges. There are some practical challenges
with large-scale use of TEO. In addition to partial availability (Sec-
tion 4.6), identity management can be complex. Admins need to
associate a user’s public key with their real identity. This could
be facilitated by conventional PKIs, third-party services like Key-
base [48] or a trusted mediator (e.g., Airbnb holds public keys and
identities for hosts and guests). Moreover, storage providers should
be compensated since they will host all encrypted data with high
availability. To encourage competitive pricing and avoid vendor
lock-in, TEO’s design does not require strong trust in the storage
provider, so this role can be filled by many entities (e.g., building
manager self-hosts, public cloud services, or centralized servers
in Airbnb). We also provide a reference storage provider imple-
mentation in our TEO prototype that uses a simple key value store
database.
Monitoring Device Ownership. To ensure their data are always
protected by TEO, users should keep monitoring the list of devices
they currently own. Otherwise, they might mistakenly think they
still are ephemeral owners when the device is re-claimed by some-
one else. We envision extending TEO mobile apps with monitoring
functionality for future deployment to alleviate user burdens. The
app can send notifications when the user loses device ownership to
help them stay informed. It can also analyze the latest data stored
by the device to verify that the user is one of the owners (since
metadata is publicly accessible).

9 CONCLUSION
In this paper, we identify an emerging challenge in smart device
deployments – mismatched device and data ownerships during
ownership. To protect all stakeholders’ security and control over
their data, we propose TEO – IoT Ephemeral Ownership – and de-
sign a complete protocol specification to achieve this idea for smart
devices. We conduct formal security analysis and prove the correct-
ness and security of TEO’s protocol design. Finally, we implement
a prototype of TEO and integrate several real-world smart devices
on top of it to demonstrate its practicality and low performance
overhead in real-world settings.

ACKNOWLEDGEMENTS
We thank Haojian Jin, Frank Wang, and Bruno Blanchet for their
helpful correspondences and valuable insights influencing the de-
sign of TEO’s core components. Furthermore, we greatly appre-
ciate the anonymous reviewers, CMU colleagues (Bryan Parno,
Wenting Zheng, Eunsuk Kang, Travis Hance, and Christopher
Canel), and our shepherd, Diego Perino, for their feedback and
comments on our paper drafts. This work was partially supported
by NSF Awards CNS-1704542, CNS-1943016, TWC-1564009 and
SaTC-1801472, ONR Award N000141812618, and the Carnegie Mel-
lon CyLab Security and Privacy Institute.

313

TEO: Ephemeral Ownership for IoT Devices to Provide Granular Data Control MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

REFERENCES
[1] Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Rodrigo Be-

nenson, Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and Tong Tong Wu.
2016. I-pic: A platform for privacy-compliant image capture. In Proceedings of the
14th annual international conference on mobile systems, applications, and services.
235–248.

[2] Fatemah Alharbi, Arwa Alrawais, Abdulrahman Bin Rabiah, Silas Richelson, and
Nael Abu-Ghazaleh. 2021. CSProp: Ciphertext and Signature Propagation Low-
Overhead Public-Key Cryptosystem for IoT Environments. In 30th {USENIX}
Security Symposium ({USENIX} Security 21). 609–626.

[3] Mahmoud Ammar, Bruno Crispo, and Gene Tsudik. 2020. SIMPLE: A remote
attestation approach for resource-constrained IoT devices. In 2020 ACM/IEEE
11th International Conference on Cyber-Physical Systems (ICCPS). IEEE, 247–258.

[4] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb,
Hyung-Sin Kim, David E Culler, and Raluca Ada Popa. 2019. WAVE: A Decen-
tralized Authorization Framework with Transitive Delegation. In 28th USENIX
Security Symposium (USENIX Security 19). 1375–1392.

[5] Android. 2021. BatteryManager. https://developer.android.com/reference/androi
d/os/BatteryManager.

[6] Andrew W Appel and Edward W Felten. 1999. Proof-carrying authentication. In
Proceedings of the 6th ACM Conference on Computer and Communications Security.
52–62.

[7] Apple. 2021. Bonjour. https://developer.apple.com/bonjour/.
[8] Gbadebo Ayoade, Vishal Karande, Latifur Khan, and Kevin Hamlen. 2018. Decen-

tralized IoT data management using blockchain and trusted execution environ-
ment. In 2018 IEEE International Conference on Information Reuse and Integration
(IRI). IEEE, 15–22.

[9] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers,
Kevin Liao, and Bryan Parno. 2021. SoK: Computer-Aided Cryptography. In IEEE
Symposium on Security and Privacy.

[10] Lujo Bauer, Scott Garriss, Jonathan M McCune, Michael K Reiter, Jason Rouse,
and Peter Rutenbar. 2005. Device-enabled authorization in the Grey system. In
International Conference on Information Security. Springer, 431–445.

[11] Julia Bernd, Ruba Abu-Salma, and Alisa Frik. 2020. Bystanders’ Privacy: The
Perspectives of Nannies on Smart Home Surveillance. In 10th USENIX Workshop
on Free and Open Communications on the Internet (FOCI 20).

[12] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. 2015. A messy state of the union: Taming the composite state
machines of TLS. In 2015 IEEE Symposium on Security and Privacy. IEEE, 535–552.

[13] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson, Ankur Taly, Michael Vrable,
and Mark Lentczner. 2014. Macaroons: Cookies with Contextual Caveats for
Decentralized Authorization in the Cloud. In Network and Distributed System
Security Symposium.

[14] Bruno Blanchet. 2012. Security protocol verification: Symbolic and computational
models. In International Conference on Principles of Security and Trust. Springer,
3–29.

[15] Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif. Found. Trends Priv. Secur. (2016).

[16] Bruno Blanchet. 2021. ProVerif users. https://prosecco.gforge.inria.fr/personal/
bblanche/proverif/proverif-users.html.

[17] Blynk.io. 2022. Blynk Library. https://github.com/blynkkk/blynk-library.
[18] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. 2013.

Key homomorphic PRFs and their applications. In Annual Cryptology Conference.
Springer, 410–428.

[19] CNBC. 2021. Amazon Alexa records you every time you ask it something —
here’s how to delete those recordings. https://www.cnbc.com/2021/02/18/how-
to-delete-amazon-alexa-recordings-for-privacy.html.

[20] CNET. 2021. Amazon’s Astro may be cute, but security experts warn of privacy
concerns. https://www.cnet.com/tech/amazons-astro-may-be-cute-but-
security-experts-warn-of-privacy-concerns/.

[21] Camille Cobb, Sruti Bhagavatula, Kalil Anderson Garrett, Alison Hoffman, Varun
Rao, and Lujo Bauer. 2021. “I would have to evaluate their objections”: Privacy
tensions between smart home device owners and incidental users. Proceedings
on Privacy Enhancing Technologies 4 (2021), 54–75.

[22] Jessica Colnago, Yuanyuan Feng, Tharangini Palanivel, Sarah Pearman, Megan
Ung, Alessandro Acquisti, Lorrie Faith Cranor, and Norman Sadeh. 2020. Inform-
ing the design of a personalized privacy assistant for the internet of things. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.

[23] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. 2017. A comprehensive symbolic analysis of TLS 1.3. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1773–1788.

[24] Crypto++. 2021. Crypto++. https://www.cryptopp.com/.
[25] Rajib Dey, Sayma Sultana, Afsaneh Razi, and Pamela J Wisniewski. 2020. Explor-

ing Smart Home Device Use by Airbnb Hosts. In Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems. 1–8.

[26] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.
IEEE Transactions on information theory 29, 2 (1983), 198–208.

[27] Chethana Dukkipati, Yunpeng Zhang, and Liang Chieh Cheng. 2018. Decentral-
ized, blockchain based access control framework for the heterogeneous internet
of things. In Proceedings of the Third ACM Workshop on Attribute-Based Access
Control. 61–69.

[28] Pardis Emami-Naeini, Janarth Dheenadhayalan, Yuvraj Agarwal, and Lorrie Faith
Cranor. 2021. Which Privacy and Security Attributes Most Impact Consumers’
Risk Perception and Willingness to Purchase IoT Devices?. In 2021 IEEE Sympo-
sium on Security and Privacy (SP). 1937–1954.

[29] Jeremy Erickson, Qi Alfred Chen, Xiaochen Yu, Erinjen Lin, Robert Levy, and
Z Morley Mao. 2018. No one in the middle: Enabling network access control via
transparent attribution. In Proceedings of the 2018 on Asia Conference on Computer
and Communications Security. 651–658.

[30] Espressif. 2020. ESP8266 Datasheet. https://www.espressif.com/sites/default/fil
es/documentation/0a-esp8266ex_datasheet_en.pdf.

[31] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. FlowFence: Practical Data Protection for Emerg-
ing IoT Application Frameworks. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 531–548. https://www.usenix.org
/conference/usenixsecurity16/technical-sessions/presentation/fernandes

[32] Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, and Rajesh K Gupta. 2020.
ACES: Automatic configuration of energy harvesting sensors with reinforcement
learning. ACM Transactions on Sensor Networks (TOSN) 16, 4 (2020), 1–31.

[33] Diana Freed, Sam Havron, Emily Tseng, Andrea Gallardo, Rahul Chatterjee,
Thomas Ristenpart, and Nicola Dell. 2019. " Is my phone hacked?" Analyzing
Clinical Computer Security Interventions with Survivors of Intimate Partner
Violence. Proceedings of the ACM on Human-Computer Interaction 3, CSCW (2019),
1–24.

[34] Diana Freed, Jackeline Palmer, Diana Elizabeth Minchala, Karen Levy, Thomas
Ristenpart, and Nicola Dell. 2017. Digital technologies and intimate partner
violence: A qualitative analysis with multiple stakeholders. Proceedings of the
ACM on Human-Computer Interaction 1, CSCW (2017), 1–22.

[35] Google. 2021. FlatBuffers. https://google.github.io/flatbuffers/.
[36] Google. 2021. LevelDB. https://github.com/google/leveldb.
[37] Saikat Guha, Mudit Jain, and Venkata N Padmanabhan. 2012. Koi: A location-

privacy platform for smartphone apps. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). 183–196.

[38] Hacker Shack. 2017. Smartphone Connected Home Door Lock. https://www.ha
ckster.io/hackershack/smartphone-connected-home-door-lock-69944f.

[39] Mike Hamburg. 2021. Ed448-Goldilocks. https://sourceforge.net/p/ed448goldilo
cks/wiki/Home/.

[40] Sam Havron, Diana Freed, Rahul Chatterjee, Damon McCoy, Nicola Dell, and
Thomas Ristenpart. 2019. Clinical computer security for victims of intimate
partner violence. In 28th USENIX Security Symposium (USENIX Security 19).

[41] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Ear-
lence Fernandes, and Blase Ur. 2018. Rethinking access control and authentication
for the home internet of things (IoT). In 27th USENIX Security Symposium (USENIX
Security 18).

[42] Weijia He, Valerie Zhao, Olivia Morkved, Sabeeka Siddiqui, Earlence Fernandes,
Josiah D. Hester, and Blase Ur. 2021. SoK: Context Sensing for Access Control in
the Adversarial Home IoT. In Proceedings of the 6th IEEE European Symposium on
Security and Privacy.

[43] James Hong, Amit Levy, Laurynas Riliskis, and Philip Levis. 2018. Don’t Talk
Unless I Say So! Securing the Internet of Things with Default-Off Network-
ing. In 3rd ACM/IEEE International Conference on Internet-of-Things Design and
Implementation (IoTDI).

[44] Qinlong Huang, Yixian Yang, and Licheng Wang. 2017. Secure Data Access
Control With Ciphertext Update and Computation Outsourcing in Fog Com-
puting for Internet of Things. IEEE Access 5 (2017), 12941–12950. https:
//doi.org/10.1109/ACCESS.2017.2727054

[45] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Gene Tsudik. 2018. Us-aid: Unat-
tended scalable attestation of iot devices. In 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS). IEEE, 21–30.

[46] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Z. Morley Mao, and Atul Prakash. 2017. ContexIoT: Towards Providing Contex-
tual Integrity to Appified IoT Platforms. In 21st Network and Distributed Security
Symposium.

[47] Haojian Jin, Gram Liu, David Hwang, Swarun Kumar, Yuvraj Agarwal, and Jason I
Hong. 2022. Peekaboo: A Hub-Based Approach to Enable Transparency in Data
Processing within Smart Homes. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE.

[48] Keybase. 2021. Keybase. https://keybase.io/.
[49] Dohyun Kim, Prasoon Patidar, Han Zhang, Abhijith Anilkumar, and Yuvraj Agar-

wal. 2022. Self-Serviced IoT: Practical and Private IoT Computation Offloading
with Full User Control. arXiv preprint arXiv:2205.04405 (2022).

[50] Hokeun Kim, Eunsuk Kang, Edward A. Lee, andDavid Broman. 2017. A Toolkit for
Construction of Authorization Service Infrastructure for the Internet of Things.

314

https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.apple.com/bonjour/
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/proverif-users.html
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/proverif-users.html
https://github.com/blynkkk/blynk-library
https://www.cnbc.com/2021/02/18/how-to-delete-amazon-alexa-recordings-for-privacy.html
https://www.cnbc.com/2021/02/18/how-to-delete-amazon-alexa-recordings-for-privacy.html
https://www.cnet.com/tech/amazons-astro-may-be-cute-but-security-experts-warn-of-privacy-concerns/
https://www.cnet.com/tech/amazons-astro-may-be-cute-but-security-experts-warn-of-privacy-concerns/
https://www.cryptopp.com/
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://google.github.io/flatbuffers/
https://github.com/google/leveldb
https://www.hackster.io/hackershack/smartphone-connected-home-door-lock-69944f
https://www.hackster.io/hackershack/smartphone-connected-home-door-lock-69944f
https://sourceforge.net/p/ed448goldilocks/wiki/Home/
https://sourceforge.net/p/ed448goldilocks/wiki/Home/
https://doi.org/10.1109/ACCESS.2017.2727054
https://doi.org/10.1109/ACCESS.2017.2727054
https://keybase.io/

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA Han Zhang, Yuvraj Agarwal, and Matt Fredrikson

In 2017 IEEE/ACM Second International Conference on Internet-of-Things Design
and Implementation (IoTDI). 147–158.

[51] Wonjung Kim, Seungchul Lee, Youngjae Chang, Taegyeong Lee, Inseok Hwang,
and Junehwa Song. 2021. Hivemind: social control-and-use of IoT towards
democratization of public spaces. In Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and Services. 467–482.

[52] Boyu Kuang, Anmin Fu, Shui Yu, Guomin Yang, Mang Su, and Yuqing Zhang.
2019. ESDRA: An efficient and secure distributed remote attestation scheme for
IoT swarms. IEEE Internet of Things Journal 6, 5 (2019), 8372–8383.

[53] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E.
Culler. 2019. JEDI: Many-to-Many End-to-End Encryption and Key Delegation
for IoT. In 28th USENIX Security Symposium (USENIX Security 19). USENIX Asso-
ciation, Santa Clara, CA, 1519–1536. https://www.usenix.org/conference/usenix
security19/presentation/kumar-sam

[54] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber. 1992.
Authentication in distributed systems: Theory and practice. ACM Transactions
on Computer Systems (TOCS) 10, 4 (1992), 265–310.

[55] Gierad Laput, Yang Zhang, and Chris Harrison. 2017. Synthetic sensors: Towards
general-purpose sensing. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. 3986–3999.

[56] Tam Le and Matt W Mutka. 2019. Access control with delegation for smart home
applications. In Proceedings of the International Conference on Internet of Things
Design and Implementation. 142–147.

[57] Ding Li, Shuai Hao, Jiaping Gui, andWilliamGJ Halfond. 2014. An empirical study
of the energy consumption of android applications. In 2014 IEEE International
Conference on Software Maintenance and Evolution. IEEE, 121–130.

[58] Ding Li, Shuai Hao,William GJ Halfond, and Ramesh Govindan. 2013. Calculating
source line level energy information for android applications. In Proceedings of
the 2013 International Symposium on Software Testing and Analysis. 78–89.

[59] libsodium. 2021. A modern, portable, easy to use crypto library. https://libsodiu
m.org/.

[60] Shrirang Mare, Franziska Roesner, and Tadayoshi Kohno. 2020. Smart Devices in
Airbnbs: Considering Privacy and Security for both Guests and Hosts. Proc. Priv.
Enhancing Technol. 2020, 2 (2020), 436–458.

[61] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2021. PPFL: privacy-preserving federated learning with trusted
execution environments. In Proceedings of the 19th Annual International Confer-
ence on Mobile Systems, Applications, and Services. 94–108.

[62] Murat Moran and Dan SWallach. 2017. Verification of STAR-Vote and Evaluation
of FDR and ProVerif. In International Conference on Integrated Formal Methods.
Springer, 422–436.

[63] Motion. 2021. Motion. https://motion-project.github.io/.
[64] Mycroft. 2021. Mycroft – The Open Source Privacy-Focused Voice Assistant.

https://mycroft.ai/.
[65] Radius Network. 2021. Android Beacon Library. https://altbeacon.github.io/andr

oid-beacon-library/index.html.
[66] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael

Steiner, and Gene Tsudik. 2019. {VRASED}: A Verified {Hardware/Software}
{Co-Design} for Remote Attestation. In 28th USENIX Security Symposium
(USENIX Security 19). 1429–1446.

[67] Open Connectivity Foundation. 2021. UPnP Standards and Architecture. https:
//openconnectivity.org/developer/specifications/upnp-resources/upnp.

[68] Nouha Oualha and Kim Thuat Nguyen. 2016. Lightweight Attribute-Based
Encryption for the Internet of Things. In 2016 25th International Conference on
Computer Communication and Networks (ICCCN). 1–6. https://doi.org/10.1109/
ICCCN.2016.7568538

[69] Shijia Pan, Carlos Ruiz, Jun Han, Adeola Bannis, Patrick Tague, Hae Young Noh,
and Pei Zhang. 2018. Universense: IoT device pairing through heterogeneous
sensing signals. In Proceedings of the 19th International Workshop on Mobile
Computing Systems & Applications. 55–60.

[70] Simon Parkin, Trupti Patel, Isabel Lopez-Neira, and Leonie Tanczer. 2019. Usabil-
ity analysis of shared device ecosystem security: Informing support for survivors
of IoT-facilitated tech-abuse. In Proceedings of the New Security Paradigms Work-
shop.

[71] Bryan Parno. 2008. Bootstrapping Trust in a" Trusted" Platform.. In HotSec.
[72] Bryan Parno, Jonathan M McCune, and Adrian Perrig. 2010. Bootstrapping trust

in commodity computers. In 2010 IEEE Symposium on Security and Privacy. IEEE,
414–429.

[73] Otto Julio Ahlert Pinno, Andre Ricardo Abed Gregio, and Luis C. E. De Bona. 2017.
ControlChain: Blockchain as a Central Enabler for Access Control Authorizations
in the IoT. In GLOBECOM 2017 - 2017 IEEE Global Communications Conference.
1–6. https://doi.org/10.1109/GLOCOM.2017.8254521

[74] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In 2015 IEEE symposium on security and
privacy. IEEE, 38–54.

[75] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational access control
in the internet of things. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. 1056–1073.
[76] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy.

2017. Towards blockchain-based auditable storage and sharing of IoT data. In
Proceedings of the 2017 on Cloud Computing Security Workshop. 45–50.

[77] Hossein Shafagh, Lukas Burkhalter, Sylvia Ratnasamy, and Anwar Hithnawi.
2020. Droplet: Decentralized Authorization and Access Control for Encrypted
Data Streams. In 29th {USENIX} Security Symposium ({USENIX} Security 20).
2469–2486.

[78] Hossein Shafagh, Anwar Hithnawi, Lukas Burkhalter, Pascal Fischli, and Simon
Duquennoy. 2017. Secure sharing of partially homomorphic encrypted IoT data.
In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems.
1–14.

[79] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[80] Amit Kumar Sikder, Leonardo Babun, Z Berkay Celik, Abbas Acar, Hidayet

Aksu, Patrick McDaniel, Engin Kirda, and A Selcuk Uluagac. 2020. Kratos:
multi-user multi-device-aware access control system for the smart home. In
Prelavantroceedings of the 13th ACMConference on Security and Privacy inWireless
and Mobile Networks.

[81] Thread Group. 2021. Thread. https://www.threadgroup.org/.
[82] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private exe-

cution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287
(2018).

[83] Rahmadi Trimananda, Ali Younis, Bojun Wang, Bin Xu, Brian Demsky, and
Guoqing Xu. 2018. Vigilia: Securing Smart Home Edge Computing. In 2018
IEEE/ACM Symposium on Edge Computing (SEC).

[84] Emily Tseng, Rosanna Bellini, Nora McDonald, Matan Danos, Rachel Greenstadt,
Damon McCoy, Nicola Dell, and Thomas Ristenpart. 2020. The Tools and Tactics
Used in Intimate Partner Surveillance: An Analysis of Online Infidelity Forums.
In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1893–1909.

[85] Frank Wang, James Mickens, Nickolai Zeldovich, and Vinod Vaikuntanathan.
2016. Sieve: Cryptographically enforced access control for user data in untrusted
clouds. In 13th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 16). 611–626.

[86] Qinying Wang, Shouling Ji, Yuan Tian, Xuhong Zhang, Binbin Zhao, Yuhong
Kan, Zhaowei Lin, Changting Lin, Shuiguang Deng, Alex X Liu, et al. 2021.
MPInspector: a systematic and automatic approach for evaluating the security
of IoT messaging protocols. In 30th {USENIX} Security Symposium ({USENIX}
Security 21). 4205–4222.

[87] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave Jing Tian, Antonio Bianchi,
Mathias Payer, and Dongyan Xu. 2020. {BLESA}: Spoofing Attacks against
Reconnections in Bluetooth Low Energy. In 14th {USENIX}Workshop on Offensive
Technologies ({WOOT} 20).

[88] Yaxing Yao, Justin Reed Basdeo, Oriana Rosata Mcdonough, and Yang Wang.
2019. Privacy perceptions and designs of bystanders in smart homes. Proceedings
of the ACM on Human-Computer Interaction 3, CSCW (2019), 1–24.

[89] Bin Yuan, Yan Jia, Luyi Xing, Dongfang Zhao, XiaoFengWang, and Yuqing Zhang.
2020. Shattered Chain of Trust: Understanding Security Risks in Cross-Cloud
IoT Access Delegation. In 29th USENIX Security Symposium (USENIX Security 20).
1183–1200.

[90] Gina Yuan, David Mazières, and Matei Zaharia. 2022. Extricating IoT Devices
from Vendor Infrastructure with Karl. arXiv preprint arXiv:2204.13737 (2022).

[91] Eric Zeng and Franziska Roesner. 2019. Understanding and improving security
and privacy in multi-user smart homes: a design exploration and in-home user
study. In 28th USENIX Security Symposium (USENIX Security 19).

[92] Zeroconf. 2021. Zero Configuration Networking. http://www.zeroconf.org/.
[93] Han Zhang, Abhijith Anilkumar, Matt Fredrikson, and Yuvraj Agarwal. 2021.

Capture: Centralized Library Management for Heterogeneous IoT Devices. In
USENIX Security Symposium.

[94] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E
Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed
analytics platform. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). 283–298.

315

https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-sam
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-sam
https://libsodium.org/
https://libsodium.org/
https://motion-project.github.io/
https://mycroft.ai/
https://altbeacon.github.io/android-beacon-library/index.html
https://altbeacon.github.io/android-beacon-library/index.html
https://openconnectivity.org/developer/specifications/upnp-resources/upnp
https://openconnectivity.org/developer/specifications/upnp-resources/upnp
https://doi.org/10.1109/ICCCN.2016.7568538
https://doi.org/10.1109/ICCCN.2016.7568538
https://doi.org/10.1109/GLOCOM.2017.8254521
https://www.threadgroup.org/
http://www.zeroconf.org/

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Target Use Cases
	3.2 Design Goals
	3.3 Threat Model

	4 TEO Protocol
	4.1 Notation
	4.2 Device Initialization
	4.3 Device Ownership Management
	4.4 Data Storage and Access
	4.5 Revocation
	4.6 Partial Availability

	5 Security Analysis
	5.1 Security Goals
	5.2 Modeling Protocol Workflow
	5.3 Modeling Security Goals
	5.4 Modeling Group Ownership

	6 Implementation
	7 Evaluation
	7.1 Microbenchmarks
	7.2 Case Studies

	8 Discussion and Limitations
	9 Conclusion
	References

